Biocompatible reinforcement of poly(Lactic acid) with graphene nanoplatelets
نویسندگان
چکیده
منابع مشابه
Microwave-Assisted Modification of Carbon Nanotubes with Biocompatible Polylactic Acid
Polylactic acid (PLA) was successfully covalently grafted onto multi-walled carbon nanotubes (MWCNT) by microwave-assisted polymerization of lactide monomers. The final products MWCNT-g-PLA were characterized with Fourier-transform IR (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). The results indicated PLA chain was covalently attached t...
متن کاملAntimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (Gn...
متن کاملSynthesis of amphiphilic graphene nanoplatelets.
Graphene, a flat monolayer of carbon atoms tightly packed into a two-dimensional honeycomb lattice, has attracted a great deal of attention in recent years for potential applications in many technological fields, such as nanoelectronics, nanocomposites, and hydrogen supercapacitors. One possible route to harnessing these properties would be to incorporate graphene sheets into composite material...
متن کاملGraphene Nanoplatelets as Novel Reinforcement Filler in Poly(lactic acid)/Epoxidized Palm Oil Green Nanocomposites: Mechanical Properties
Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites...
متن کاملLbL: Layer-by-Layer; GOx: Glucose Oxidase; G-chitosan: Reduced Graphene Oxide Nanoplatelets Functionalized with Chitosan; GPSS: Reduced Graphene Oxide Nanoplatelets Functionalized with Poly(Styrenesulfonic Acid)
This work aims the functionalization of reduced graphene oxide nanoplatelets with chitosan (G-chitosan) and also with poly(styrenesulfonic acid) (GPSS), thus forming stable, dispersed aqueous solutions. G-chitosan and GPSS solutions allowed the layer-by-layer (LbL) film formation with glucose oxidase (GOx), establishing multilayered nanostructures with elevated control in thickness and morpholo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymer Composites
سال: 2016
ISSN: 0272-8397
DOI: 10.1002/pc.24050